Electronics#ar #VR #AR Glasses #Augmented Reality #Virtual Reality #techtok #cftech
Use this section to provide a description of your blog./pages/blog
What are 3 augmented reality applications?
Posted by Technology Co., Ltd Shenzhen Mshilor
The advent of a device such as "Glass" could significantly contribute to the evolution of navigation and GPS systems. Currently, drivers must shift their gaze to a small screen on the dashboard, drawing their attention away from the road momentarily. A glass-type device could improve this experience. However, designing such a display to be functional without impeding the user poses a considerable challenge to user experience. Nevertheless, this challenge is not insurmountable.

Computer vision technology enables a range of possibilities, including facial recognition, barcodes, and QR codes. A hypothetical use case in which law enforcement officers wearing a capable device can dynamically access relevant information on any vehicles they inspect may seem like a concept from a science-fiction movie. Suppose a vehicle has outstanding tickets or is involved in an ongoing crime. In that case, the device could highlight the car in red, immediately notifying police elsewhere to be on the lookout. This process could occur in real-time without the officers initiating a query, providing substantial value.
Read more
The advent of a device such as "Glass" could significantly contribute to the evolution of navigation and GPS systems. Currently, drivers must shift their gaze to a small screen on the dashboard, drawing their attention away from the road momentarily. A glass-type device could improve this experience. However, designing such a display to be functional without impeding the user poses a considerable challenge to user experience. Nevertheless, this challenge is not insurmountable.

Computer vision technology enables a range of possibilities, including facial recognition, barcodes, and QR codes. A hypothetical use case in which law enforcement officers wearing a capable device can dynamically access relevant information on any vehicles they inspect may seem like a concept from a science-fiction movie. Suppose a vehicle has outstanding tickets or is involved in an ongoing crime. In that case, the device could highlight the car in red, immediately notifying police elsewhere to be on the lookout. This process could occur in real-time without the officers initiating a query, providing substantial value.
Read more
How Does Augmented Reality Work?
Posted by Shenzhen MshilorTechnology Co., Ltd
Read more
AUGMENTED-REALITY SMART GLASSES FOR INDUSTRY 4.0
Posted by Shenzhen MshilorTechnology Co., Ltd
Remember when everyone said that augmented-reality glasses had failed horribly and died?
They didn’t.
They were simply reborn into a sector where privacy concerns and geek-averse fashion traumas do not matter so much.
Smart glasses have now taken on a new life in digital factories, supporting an initiative known as “Industry 4.0”.
What Is Industry 4.0?
Sometimes called the fourth industrial revolution, Industry 4.0 was coined in 2011 by the German government and aims to improve productivity in digital manufacturing, by consolidating the Internet-of-Things (IoT), Artificial Intelligence (AI) and Big Data directly onto the factory floor.
As Peggy Gulick, Director of Business Process Improvement at AGCO, a US-based agricultural machinery manufacturer, says:
“Augmented-Reality Glasses don’t replace people; they allow people to be smarter, faster and better at their jobs”.
Also known as smart spectacles, smart eye glasses and AR glasses, there are now of course many large manufacturers, but rather than reviewing specific products, we are going to deep-dive into the technology, its benefits and the applications for industry.
The secret sauce of all smart glasses is the merging of virtual and physical worlds by a hardware / software technology called ‘Augmented Reality’ (AR).
How many people though really know what AR is and how it works?
Let’s find out.
What is Augmented Reality?
Augmented Reality is simply the superposition of digital information onto the viewable natural world, and requires the following core elements to function:-
- A digital camera, normally embedded into a device, such as a smartphone or head-mounted smart spectacles,
- AR software, which uses computer vision to interpret the real world and superimpose the digital model onto the user’s field of vision,
- Cloud-connectivity to a ‘digital twin’ (a 3-dimensional model) of the object being viewed in the real world, and
- Sensors, located on the real world object, which inform the digital twin what state it is in and what operations can be performed on it. This sensorial information can furthermore be combined with information from the factory-level or from the business itself.
The following diagram breaks down how it works:

- The AR device (e.g. smartphone) uses computer vision to identify the real world object (e.g. an industrial robot). This can be achieved through snazzy machine learning that recognises the object, or some sort of marker (for example, a QR code).
- The AR device then connects to the cloud-based digital twin of the real world object.
- The real world object also connects to the digital twin, streaming its current state of play, and showing all the operations you can perform on it.
- The data from the digital twin is sent to the AR device where the AR software merges the virtual model onto the real world object. You might visualise this as an automotive-style dashboard floating in your field of view above the robot and indicating its operational status, for example.
- The user can now send commands to the digital twin via the AR device, asking the robot to perform a function, using either a virtual user interface provided by the software, or via voice commands.
- Finally, these commands are sent from the digital twin to the real world object to be executed, and any resulting status messages are fed back to the digital twin.
What has this got to do with Smart Glasses?
Good question.
In fact, smart glasses are really only there to bring the AR hardware closer to your eyes, so you can simultaneously view the real world object and the superimposed augmented elements.
Oh, and I forgot to mention:
They allow hands-free operation, which is a Really Big Deal for industrial operators.
We could also achieve the same concept in very different implementations:
- a camera embedded into an automotive windscreen (like a heads-up display), allowing us to see information about speed, traffic delays and fuel consumption.
- a camera embedded into an aircraft cabin window, to view geographical information superimposed on the terrain below, or
- a camera embedded into a building facade, where AI software could estimate security risks for banks or jewellers and inform staff of nearby known assailants through facial recognition.

None of these however offer the benefits of simultaneous viewing of physical and virtual worlds in a manner which accompanies the user and is hands-free, hence the popularity of smart glasses as a vehicle for AR.
We will purposefully stay away from reviewing the many competing products, since that information can get out of date very quickly, and there are far better resources doing that already.
Instead, here is a non-exhaustive list of augmented-reality smart glasses on the market currently, listed in alphabetical order:
- Aleger Smart Glasses
- Augumenta Smart Glasses
- Google Glass
- Microsoft Hololens 2
- RayBan Smart Glasses
- RealWear HMT-1 Smart Glasses
- Vuzix Smart Glasses
AR Smart Glasses – Survey
Rather than looking at the marketing hype coming from manufacturers, let’s look at a real-world survey done by the University of Skövde in Sweden into real operators using real AR devices in real manufacturing environments.
The study highlights the current challenges and future improvements that smart glasses will need to deliver to see greater market penetration.
Importantly, this is done from the perspective of industrial operators and includes factors such as the importance of assembly instructions (i.e. the user interface), ergonomics (critical for safety), as well as design, support, and training.
The main challenges outlined in the survey point to:-
- out-dated assembly instructions with a lack of feedback on errors made during the assembly, which should ideally contain more multimedia and less text
- a limited field of view offered by the smart glasses
- how seamlessly the augmented reality is integrated into the real world
- product testing based on overly-simplified tasks executed by people who are not experienced industrial operators
- insufficient focus on the weight of the AR smart glasses and the weight distribution relative to the orientation of the user’s head, often resulting in fatigue from extended use, and
- limited battery life of the units themselves.
There are several ways to implement AR in mobile devices:
Projection-based AR
This involves a projector worn on the user’s head and uses retroreflective materials strategically placed in the environment to ease recognition.
Eye-multiplexed AR
This is where virtual elements are synchronised with the physical environment but not superimposed onto the real world.
Video see-through AR
This technique combines virtual content with a real-time video stream. This method suffers from increased motion-sickness though and poor internet bandwidth can result in choppy video feeds.
Retinal Projection
In which thin parallel light beams are focused into the user’s eyes.
Optical see-through AR
Creates virtual elements in the user’s field of view by directing light through half mirrors or prisms. This is the most common commercially-available solution right now.
Case Study: TÜV-SÜD Global Risk Consultants
One organisation actively using AR smart glasses is the company TÜV-SÜD, headquartered in Germany, who provide Fire Protection Engineering, Boiler & Machinery Engineering and Natural Hazards Analysis as a remote service.
This enables remote participation with the client during site visits as well as real-time video calls and in-situ photographic documentation for risk assessment of industrial environments.
In this case, TÜV-SÜD use the Realwear HMT-1 for standard industrial environments and the HMT-1Z1 model when explosion protection is needed. Since the latter model has ATEX Zone 1 certification, this allows its use in wet, dusty, hot, dangerous and loud industrial environments.
Wrapping it up
To conclude, augmented-reality smart glasses have seen limited market penetration, despite the financial clout of manufacturers such as Microsoft and Google, but the technology does present very clear benefits that need further exploration and real-world validation.
The survey pointed out in this article certainly pushes the industry to compare real results for real users to identify real areas for improvement, but the work of integrating AR smart glasses into complex manufacturing environments has only just begun.
At Smart Glass World, we look forward to offering our readers further insights into the state of the market in years to come as this technology matures and receives the market penetration that it so richly deserves.
by smartglassworld.net
https://www.smartglassworld.net/ar-smart-glasses-industry
Read more
Remember when everyone said that augmented-reality glasses had failed horribly and died?
They didn’t.
They were simply reborn into a sector where privacy concerns and geek-averse fashion traumas do not matter so much.
Smart glasses have now taken on a new life in digital factories, supporting an initiative known as “Industry 4.0”.
What Is Industry 4.0?
Sometimes called the fourth industrial revolution, Industry 4.0 was coined in 2011 by the German government and aims to improve productivity in digital manufacturing, by consolidating the Internet-of-Things (IoT), Artificial Intelligence (AI) and Big Data directly onto the factory floor.
As Peggy Gulick, Director of Business Process Improvement at AGCO, a US-based agricultural machinery manufacturer, says:
“Augmented-Reality Glasses don’t replace people; they allow people to be smarter, faster and better at their jobs”.
Also known as smart spectacles, smart eye glasses and AR glasses, there are now of course many large manufacturers, but rather than reviewing specific products, we are going to deep-dive into the technology, its benefits and the applications for industry.
The secret sauce of all smart glasses is the merging of virtual and physical worlds by a hardware / software technology called ‘Augmented Reality’ (AR).
How many people though really know what AR is and how it works?
Let’s find out.
What is Augmented Reality?
Augmented Reality is simply the superposition of digital information onto the viewable natural world, and requires the following core elements to function:-
- A digital camera, normally embedded into a device, such as a smartphone or head-mounted smart spectacles,
- AR software, which uses computer vision to interpret the real world and superimpose the digital model onto the user’s field of vision,
- Cloud-connectivity to a ‘digital twin’ (a 3-dimensional model) of the object being viewed in the real world, and
- Sensors, located on the real world object, which inform the digital twin what state it is in and what operations can be performed on it. This sensorial information can furthermore be combined with information from the factory-level or from the business itself.
The following diagram breaks down how it works:

- The AR device (e.g. smartphone) uses computer vision to identify the real world object (e.g. an industrial robot). This can be achieved through snazzy machine learning that recognises the object, or some sort of marker (for example, a QR code).
- The AR device then connects to the cloud-based digital twin of the real world object.
- The real world object also connects to the digital twin, streaming its current state of play, and showing all the operations you can perform on it.
- The data from the digital twin is sent to the AR device where the AR software merges the virtual model onto the real world object. You might visualise this as an automotive-style dashboard floating in your field of view above the robot and indicating its operational status, for example.
- The user can now send commands to the digital twin via the AR device, asking the robot to perform a function, using either a virtual user interface provided by the software, or via voice commands.
- Finally, these commands are sent from the digital twin to the real world object to be executed, and any resulting status messages are fed back to the digital twin.
What has this got to do with Smart Glasses?
Good question.
In fact, smart glasses are really only there to bring the AR hardware closer to your eyes, so you can simultaneously view the real world object and the superimposed augmented elements.
Oh, and I forgot to mention:
They allow hands-free operation, which is a Really Big Deal for industrial operators.
We could also achieve the same concept in very different implementations:
- a camera embedded into an automotive windscreen (like a heads-up display), allowing us to see information about speed, traffic delays and fuel consumption.
- a camera embedded into an aircraft cabin window, to view geographical information superimposed on the terrain below, or
- a camera embedded into a building facade, where AI software could estimate security risks for banks or jewellers and inform staff of nearby known assailants through facial recognition.

None of these however offer the benefits of simultaneous viewing of physical and virtual worlds in a manner which accompanies the user and is hands-free, hence the popularity of smart glasses as a vehicle for AR.
We will purposefully stay away from reviewing the many competing products, since that information can get out of date very quickly, and there are far better resources doing that already.
Instead, here is a non-exhaustive list of augmented-reality smart glasses on the market currently, listed in alphabetical order:
- Aleger Smart Glasses
- Augumenta Smart Glasses
- Google Glass
- Microsoft Hololens 2
- RayBan Smart Glasses
- RealWear HMT-1 Smart Glasses
- Vuzix Smart Glasses
AR Smart Glasses – Survey
Rather than looking at the marketing hype coming from manufacturers, let’s look at a real-world survey done by the University of Skövde in Sweden into real operators using real AR devices in real manufacturing environments.
The study highlights the current challenges and future improvements that smart glasses will need to deliver to see greater market penetration.
Importantly, this is done from the perspective of industrial operators and includes factors such as the importance of assembly instructions (i.e. the user interface), ergonomics (critical for safety), as well as design, support, and training.
The main challenges outlined in the survey point to:-
- out-dated assembly instructions with a lack of feedback on errors made during the assembly, which should ideally contain more multimedia and less text
- a limited field of view offered by the smart glasses
- how seamlessly the augmented reality is integrated into the real world
- product testing based on overly-simplified tasks executed by people who are not experienced industrial operators
- insufficient focus on the weight of the AR smart glasses and the weight distribution relative to the orientation of the user’s head, often resulting in fatigue from extended use, and
- limited battery life of the units themselves.
There are several ways to implement AR in mobile devices:
Projection-based AR
This involves a projector worn on the user’s head and uses retroreflective materials strategically placed in the environment to ease recognition.
Eye-multiplexed AR
This is where virtual elements are synchronised with the physical environment but not superimposed onto the real world.
Video see-through AR
This technique combines virtual content with a real-time video stream. This method suffers from increased motion-sickness though and poor internet bandwidth can result in choppy video feeds.
Retinal Projection
In which thin parallel light beams are focused into the user’s eyes.
Optical see-through AR
Creates virtual elements in the user’s field of view by directing light through half mirrors or prisms. This is the most common commercially-available solution right now.
Case Study: TÜV-SÜD Global Risk Consultants
One organisation actively using AR smart glasses is the company TÜV-SÜD, headquartered in Germany, who provide Fire Protection Engineering, Boiler & Machinery Engineering and Natural Hazards Analysis as a remote service.
This enables remote participation with the client during site visits as well as real-time video calls and in-situ photographic documentation for risk assessment of industrial environments.
In this case, TÜV-SÜD use the Realwear HMT-1 for standard industrial environments and the HMT-1Z1 model when explosion protection is needed. Since the latter model has ATEX Zone 1 certification, this allows its use in wet, dusty, hot, dangerous and loud industrial environments.
Wrapping it up
To conclude, augmented-reality smart glasses have seen limited market penetration, despite the financial clout of manufacturers such as Microsoft and Google, but the technology does present very clear benefits that need further exploration and real-world validation.
The survey pointed out in this article certainly pushes the industry to compare real results for real users to identify real areas for improvement, but the work of integrating AR smart glasses into complex manufacturing environments has only just begun.
At Smart Glass World, we look forward to offering our readers further insights into the state of the market in years to come as this technology matures and receives the market penetration that it so richly deserves.
by smartglassworld.net
https://www.smartglassworld.net/ar-smart-glasses-industry
Read more
Vuzix CEO reveals the key to smartglasses success
Posted by Shenzhen MshilorTechnology Co., Ltd
The company has its best Q1 in 27 years as people embrace smart glasses

We’ll see AR smartglasses that people want to wear this year - but there’s a huge disconnect between what consumers expect and what the technology can currently deliver.
That’s the verdict of Paul Travers, CEO of Vuzix, who has been in the smartglasses game for 27 years.
The company has just had its strongest quarter in 10 years with its enterprise-focused smartglasses, and one also buoyed by the announcement of its consumer-focused Ultralite reference platform.
With attention focused on the industry ahead of the expected entrance of Apple's mixed-reality headset, as well, it’s a boom time for AR glasses.

Paul Travers, CEO of Vuzix.
"I think this is inevitable that people are going to wear glasses that connect the digital world to the real world. It just seems like the freight train is unstoppable. When you wear a display that gives you the bulk of what you really need off your phone without taking your phone out, that's a pretty powerful toolset," Travers told Wareable in an interview.
“I think you're going to see initial products that people actually will want to wear before this year is up, but they're going to be of simpler capabilities,” he continued.
And Travers believes that AR is finally having the moment in the sun that it deserves.
“Our Q1 is the strongest quarter we've had in a decade. People are starting to embrace this stuff. It's working. It's happening and I think we're finally at a point where you can make glasses that have that sort of fashion-forward look that are useful.”

But Travers warns that we might have to wait for the AR experience to catch up with expectations:
"The first iPhone had like three applications on it. It was very simple in comparison to where we're at today. It won't be overnight; it might be a five-year period of time where experiences get better and more capable.”
“For consumers, it's really hard because they have such high expectations - as we all do, right?"
And Travers believes that the technology we’ve seen to date missed the mark, such as HoloLens and Meta’s Oculus Quest mixed reality products, and simply aren’t what people want.
He also believes Apple is taking its time not to fall into the same trap.
"I believe the reason why Apple backed off a little bit is that Meta came out with their newest glasses, and it fell like a lead balloon a little bit. In some ways, it’s a step forward. But, from the perspective of price, wearability and fashion, it just misses on every mark."
"Microsoft…I'm not sure they're making HoloLens anymore. So the product’s not right. It's that simple. The market's not looking for that."
But Travers also revealed one of the huge secrets to success for the AR industry - waveguide panels - and revealed that it’s an area that Vuzix has invested in heavily.
But Travers warns that we might have to wait for the AR experience to catch up with expectations:
"The first iPhone had like three applications on it. It was very simple in comparison to where we're at today. It won't be overnight; it might be a five-year period of time where experiences get better and more capable.”
“For consumers, it's really hard because they have such high expectations - as we all do, right?"
And Travers believes that the technology we’ve seen to date missed the mark, such as HoloLens and Meta’s Oculus Quest mixed reality products, and simply aren’t what people want.
He also believes Apple is taking its time not to fall into the same trap.
"I believe the reason why Apple backed off a little bit is that Meta came out with their newest glasses, and it fell like a lead balloon a little bit. In some ways, it’s a step forward. But, from the perspective of price, wearability and fashion, it just misses on every mark."
"Microsoft…I'm not sure they're making HoloLens anymore. So the product’s not right. It's that simple. The market's not looking for that."
But Travers also revealed one of the huge secrets to success for the AR industry - waveguide panels - and revealed that it’s an area that Vuzix has invested in heavily.

Mass producing the waveguide panels that reflect the light into the lens to display visuals cheaply is one thing, but enabling people to do that for prescription lenses will be a huge piece of the puzzle.
"These waveguides are the cornerstone to making glasses that people will want to wear. This is what we produce - these are hard to make. The HoloLens has $150-200 apiece, and they've got a pair of them. As I said, we can do these really inexpensively," he said.
"When you get this in the supply chain for the standard eyeglasses industry, you now have what's called a digital video script. It's unheard of now, but that's going to be the beginning of being able to address the eyewear industry as a whole," he said.
It’s going to take some time – but Travers has never been so confident in the AR industry.
“I've been saying someday for 27 years now. Just think about how the iPhone went through 10 years worth of amazing upgrades and changes and improvements, and I think you're going to see that happen in the eyeglass space."
Read more
The company has its best Q1 in 27 years as people embrace smart glasses

We’ll see AR smartglasses that people want to wear this year - but there’s a huge disconnect between what consumers expect and what the technology can currently deliver.
That’s the verdict of Paul Travers, CEO of Vuzix, who has been in the smartglasses game for 27 years.
The company has just had its strongest quarter in 10 years with its enterprise-focused smartglasses, and one also buoyed by the announcement of its consumer-focused Ultralite reference platform.
With attention focused on the industry ahead of the expected entrance of Apple's mixed-reality headset, as well, it’s a boom time for AR glasses.

Paul Travers, CEO of Vuzix.
"I think this is inevitable that people are going to wear glasses that connect the digital world to the real world. It just seems like the freight train is unstoppable. When you wear a display that gives you the bulk of what you really need off your phone without taking your phone out, that's a pretty powerful toolset," Travers told Wareable in an interview.
“I think you're going to see initial products that people actually will want to wear before this year is up, but they're going to be of simpler capabilities,” he continued.
And Travers believes that AR is finally having the moment in the sun that it deserves.
“Our Q1 is the strongest quarter we've had in a decade. People are starting to embrace this stuff. It's working. It's happening and I think we're finally at a point where you can make glasses that have that sort of fashion-forward look that are useful.”

But Travers warns that we might have to wait for the AR experience to catch up with expectations:
"The first iPhone had like three applications on it. It was very simple in comparison to where we're at today. It won't be overnight; it might be a five-year period of time where experiences get better and more capable.”
“For consumers, it's really hard because they have such high expectations - as we all do, right?"
And Travers believes that the technology we’ve seen to date missed the mark, such as HoloLens and Meta’s Oculus Quest mixed reality products, and simply aren’t what people want.
He also believes Apple is taking its time not to fall into the same trap.
"I believe the reason why Apple backed off a little bit is that Meta came out with their newest glasses, and it fell like a lead balloon a little bit. In some ways, it’s a step forward. But, from the perspective of price, wearability and fashion, it just misses on every mark."
"Microsoft…I'm not sure they're making HoloLens anymore. So the product’s not right. It's that simple. The market's not looking for that."
But Travers also revealed one of the huge secrets to success for the AR industry - waveguide panels - and revealed that it’s an area that Vuzix has invested in heavily.
But Travers warns that we might have to wait for the AR experience to catch up with expectations:
"The first iPhone had like three applications on it. It was very simple in comparison to where we're at today. It won't be overnight; it might be a five-year period of time where experiences get better and more capable.”
“For consumers, it's really hard because they have such high expectations - as we all do, right?"
And Travers believes that the technology we’ve seen to date missed the mark, such as HoloLens and Meta’s Oculus Quest mixed reality products, and simply aren’t what people want.
He also believes Apple is taking its time not to fall into the same trap.
"I believe the reason why Apple backed off a little bit is that Meta came out with their newest glasses, and it fell like a lead balloon a little bit. In some ways, it’s a step forward. But, from the perspective of price, wearability and fashion, it just misses on every mark."
"Microsoft…I'm not sure they're making HoloLens anymore. So the product’s not right. It's that simple. The market's not looking for that."
But Travers also revealed one of the huge secrets to success for the AR industry - waveguide panels - and revealed that it’s an area that Vuzix has invested in heavily.

Mass producing the waveguide panels that reflect the light into the lens to display visuals cheaply is one thing, but enabling people to do that for prescription lenses will be a huge piece of the puzzle.
"These waveguides are the cornerstone to making glasses that people will want to wear. This is what we produce - these are hard to make. The HoloLens has $150-200 apiece, and they've got a pair of them. As I said, we can do these really inexpensively," he said.
"When you get this in the supply chain for the standard eyeglasses industry, you now have what's called a digital video script. It's unheard of now, but that's going to be the beginning of being able to address the eyewear industry as a whole," he said.
It’s going to take some time – but Travers has never been so confident in the AR industry.
“I've been saying someday for 27 years now. Just think about how the iPhone went through 10 years worth of amazing upgrades and changes and improvements, and I think you're going to see that happen in the eyeglass space."
Read more
Will AR Smart Glasses Replace Smartphones and Become our Personal Buddy Bots?
Posted by Shenzhen MshilorTechnology Co., Ltd